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We present a class of soliton solutions to a system of two coupled nonlinear Schrödinger equations, with an
intrinsic domain wall �DW� which separates regions occupied by two different fields. The model describes a
binary mixture of two Bose-Einstein condensates �BECs� with interspecies repulsion. For the attractive or
repulsive interactions inside each species, we find solutions which are bright or dark solitons in each compo-
nent, while for the opposite signs of the intraspecies interaction, a bright-dark soliton pair is found �each time,
with the intrinsic DW�. These solutions can arise in the context of discrete lattices, and most of them can be
supported in continuum settings by an external parabolic trap. The stability of the solitons with intrinsic DWs
is examined, and the evolution of unstable ones is analyzed. We also briefly discuss the possibility of gener-
ating such families of solutions in the presence of linear coupling between the components, and an application
of the model to bimodal light propagation in nonlinear optics.
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I. INTRODUCTION

In the past few years, the experimental and theoretical
studies of Bose-Einstein condensates �BECs� have drawn a
great deal of interest �1,2�. In particular, the dynamics of
multicomponent BECs was studied in detail. Such multispe-
cies condensates have arisen as mixtures of different spin
states in 87Rb �3,4� and 23Na �5� condensates. In addition,
many theoretical studies were devoted to mixtures of differ-
ent bosonic atomic species, such as Na-Rb �6,7�, K-Rb
�8,9�, Cs-Rb �10�, and Li-Rb �11�. Experimental realization
of a two-species BEC, namely the 41K- 87Rb mixture, has
been reported �12�; a mixture of 7Li and 133Cs was also in-
vestigated in an experiment �13�, but without driving it into
the BEC state.

A model providing a very accurate description of the
BEC-mixture dynamics is based on a system of coupled
Gross-Pitaevskii equations �GPEs� for the mean-field single-
atom wave function of each component, which takes into
account the self- and cross-interactions between the species.
Numerous issues have been considered in this framework.
Among them are ground-state solutions �6,14,15�, small-
amplitude excitations �7,16�, formation of domain walls
�DWs� between immiscible species �17–19�, bound states of
dark-bright �20� and dark-dark �21�, dark-gray, bright-gray,
bright-antidark and dark-antidark �22� complexes of solitary
waves, spatially periodic states �23�, modulated amplitude

waves �24�, and various effects produced by a linear inter-
species coupling between the components �23,25� �which is
possible in the case of two different spin states of the same
atomic species, with the linear coupling induced by a spin-
flipping electromagnetic wave�, including an effect on DWs
in the case of immiscibility �26�.

In the present work, we suggest another type of two-
component soliton structures, which exists only when the
interspecies interaction is repulsive, while the intraspecies
interactions may be both attractive, or both repulsive, or even
mixed. The repulsion between the species allows us to con-
struct DW configurations between the species. In the case of
attractive self-interactions in each component, the DW will
be between two bright solitons, one in each species. With
repulsive self-interactions, the DW will separate dark soli-
tons �rather than ground states, as in Ref. �17,18��. Finally,
for the mixed interactions, on two sides of the DW we will
find a bright soliton in one component and a dark soliton in
the other. For such configurations to be stationary, the repul-
sion between the species needs to be balanced by a confining
force. One possibility for that, which we examine in this
work, is provided by a deep optical lattice �OL�, which,
asymptotically, gives rise to a system of coupled discrete
GPEs �27–29�. Another possibility is provided by the cus-
tomary magnetic trapping �i.e., an external parabolic poten-
tial�, which is a �typically� necessary ingredient of experi-
ments with BECs �1,2�. Finally, we will also briefly consider
the case without the external trap, but with linear coupling
between the components.

A realization of the system in terms of nonlinear optics is
quite possible too. In that case, the two species represent
either two orthogonal polarizations of light, or two signals
with different carrier wavelengths �30�. In the former case,
the linear coupling can also be implemented, by twisting the
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waveguides or elliptically deforming them, in the case of
linear or circular polarizations, respectively.

The presentation is structured as follows. In Sec. II, we
describe the setup and methods to be used for the numerical
analysis of relevant solutions. In Sec. III, we study solutions
in the discrete coupled-GPE model, and in Sec. IV we con-
sider its continuum analog in the presence of the magnetic
trapping. In Sec. V, we deal with the case of the linear cou-
pling between the components. The results of the work are
summarized in Sec. VI. In two Appendixes, we present ana-
lytical calculations for properties of the solutions as func-
tions of the system’s parameters, based on the variational
approximation �VA�; these predictions are directly compared
with numerical results.

II. THE MODELS AND SETUP

The present work is based on two basic models, viz., a
discrete one and its continuous counterpart. The former
model is based on two coupled discrete nonlinear
Schrödinger �NLS� equations,

i�t�1,n = �− C�2 + g11��1,n�2 + g12��2,n�2��1,n,

i�t�2,n = �− C�2 + g12��1,n�2 + g22��2,n�2��2,n, �1�

which describe a binary mixture of BECs trapped in a deep
OL �2�, as well as beam dynamics in optical waveguide ar-
rays �30�. The real constant C accounts for the tunneling
coefficient between adjacent troughs in the OL potential, or
between adjacent waveguides in the array, and �2 is the dis-
crete Laplacian �i.e., the second difference� �2�i,n= ��i,n+1

+�i,n−1−2�i,n�. Equation �1� conserves the Hamiltonian and
the norm,

P �
1

2�
n

���1,n�2 + ��2,n�2� . �2�

The second model is the continuous counterpart of the
system �1�, which also incorporates an external trapping po-
tential V�x� �1�:

i�t�1 = �− �x
2 + g11��1�2 + g12��2�2 + V�x���1,

i�t�2 = �− �x
2 + g12��1�2 + g22��2�2 + V�x���2. �3�

In these equations, �1 and �2 describe the mean-field wave
functions of the two-component BEC, or, in the context of
optics, amplitudes of the electromagnetic field at the two
different polarizations or wavelengths. In the latter case, the
variable t is not time, but rather the propagation distance
along the optical waveguide�s�. The counterpart of the norm
�2� is the expression

P �
1

2
	

−�

+�

���1�x��2 + ��2�x��2�dx , �4�

which is a dynamical invariant of the continuum model.
The nonlinearity coefficients gjj �j=1,2� and g12 account

for the intraspecies and inter-species interactions, respec-
tively. In the context of BECs, they are proportional to the

respective scattering lengths of interactions between atoms,
while in optics they are coefficients of the self-phase modu-
lation �SPM� and cross-phase modulation �XPM�, respec-
tively. A positive �negative� scattering length corresponds to
the repulsive �attractive� interaction, and results in g�0 �g
�0� in Eq. �1� and Eq. �3�. Importantly, both the magnitude
and sign of the intra-species scattering lengths can be con-
trolled, via the Feshbach resonance, by an external spatially
uniform magnetic �31� or optical �32� field. The magnetic
field may also provide a tool for the Feshbach-resonance
control of the interspecies scattering strength �9�. In the con-
text of optics, the magnitude and sign of the SPM and XPM
coefficients are usually fixed �typically, they are negative,
corresponding to self-focusing interactions�.

We aim to investigate the case of immiscibility, corre-
sponding to

g12 � 
�g11g22� �5�

�33�, i.e., with the repulsive cross-interaction between com-
ponents effectively stronger than the self-interaction in each
species; the latter may be either repulsive or attractive. The
repulsive cross-interaction is the most generic case in BECs,
and it occurs in nonlinear optics too �self-defocusing case�.
The combination of the interspecies repulsion with either
repulsion or attraction inside each species is quite possible in
the BEC context. In ordinary optical materials, the signs of
the XPM and SPM coefficients are identical, i.e., a combina-
tion of the self-defocusing XPM and self-focusing SPM is
not possible; however, it may be engineered in nonlinear
photonic crystals �34�.

The trapping potential in Eq. �3� is assumed to be of the
usual parabolic type, customarily used in BEC experiments
�1,2�:

V�x� =
1

2
�2x2. �6�

The frequency � measures the strength of the trap.
We will look for stationary solutions to Eq. �1� and Eq. �3�

in the forms, respectively,

�1,n�t� = ei�1tun, �2,n�t� = ei�2tvn, �7�

�1�x,t� = ei�1tu�x�, �2�x,t� = ei�2tv�x� . �8�

Solutions of the boundary-value problems obtained by the
substitution of Eqs. �8� in Eq. �3� �or, in the discrete model,
by the substitution of Eqs. �7� in Eq. �1�� are found as fixed
points of a numerical iteration scheme on a finite-difference
grid. Then the linear-stability analysis is performed by as-
suming a perturbed solution,

�1 = ei�1t�u�x� + �„a�x�e−	t + b�x�e−	*t
…� ,

�2 = ei�2t�v�x� + �„c�x�e−	t + d�x�e−	*t
…� , �9�

where � is the amplitude of infinitesimal perturbations, 	 is a
�generally, complex� eigenvalue �the asterisk stands for com-
plex conjugation�, to be found from the linearized version of
Eq. �3� along with the corresponding eigenfunctions
�a�x� ,b�x�*� and �c�x� ,d�x�*�. A similar ansatz is used in the
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discrete case, with x substituted by the index n.
In the computations, a lattice or interval of sufficiently

large size is used in order to ensure that boundary effects do
not affect the results. Neumann boundary conditions are typi-
cally used.

III. THE DISCRETE MODEL

A. Bright-bright soliton pairs

The first type of localized states that was examined in this
context are pairs of bright solitons �one in each component�
with a DW between them. This class of solutions is illus-
trated in Fig. 1 for a typical example corresponding to a
weakly immiscible system �which is a realistic case for mix-
tures of two different spin states �4,6�� with g11=g22=−1 and
g12=1.1; see Eq. �5�. Solution branches were continued start-
ing from the anticontinuum �AC� limit, C=0, where the so-
lution was taken as un=
n,−n0

and vn=
n,n0
. For this initial

configuration we took �1=�2=1, even though asymmetric
solutions can be constructed as well, by taking �1��2.

First, for n0=2 �i.e., with the initial separation �n�2n0
−1=3 between the bright solitons in the two components�,
we have found that this branch is stable for C�1.85. As may
be expected, the repulsion between the pulses for larger C
�i.e., approaching the continuum limit� overcomes the pin-
ning of the pulses by the substrate lattice potential and
causes the configuration to disappear, without allowing one
to continue this solution branch to C→�. More specifically,
it disappears at C=1.89 in a saddle-node bifurcation with
another solution, which is initiated in the AC limit as un
=
n,−n0

+
n,−n0−1 and vn=
n,n0
+
n,n0+1, and is unstable in its

existence region for all values of C.
The evolution of an unstable solution pertaining to C

=1.86 is depicted in Fig. 2. It is observed that the solitons
settle at a new �roughly constant� distance �n between them,
stabilizing themselves this way.

Starting with a larger value of n0 in the AC limit �hence,
with a larger initial separation �n� results in a solution that
exists and is stable for larger values of C; e.g., for n0=3, the
pair remains stable up to C=2.34. We have also studied the
effect of the inter-species repulsion strength, by changing
g12. The result was that the larger g12, the instability sets in
earlier; e.g., for g12=2, the pair becomes unstable at C
=1.75.

B. Dark-dark soliton pairs

We now proceed to the case of repulsion in each compo-
nent �while the interspecies interaction remains repulsive and
stronger than the intraspecies repulsion�. Actually, it is the
most typical case for two different spin states in BECs �3,4�.

First, assuming g11=g22=1 and g12=1.1, we initialize our
fixed point numerical scheme in the AC limit, using
un�n1�n0

=−1, un1
=0, un1�n�n0

=1, and un�n0
=0, the initial

ansatz for vn being the mirror image of un with respect to n0.
It is easy to see that this configuration corresponds to two
dark solitons with centers at n= ±n1, separated by the DW
set at n0=0, i.e., a solution that may be naturally expected in
the present case.

In Fig. 3, we show a configuration of this type with n0
=0, n1=−9. We have found that such solutions may only be
stable where a single discrete dark soliton is stable �35�, and
they are unstable for larger values of C due to two oscillatory
instabilities accounted for by two quartets of eigenvalues
�see the third panel in Fig. 3�. As will be shown below, the
dark-dark soliton pair has a larger chance to be stable in the
continuum model.

In the last two panels of Fig. 3, where the evolution of an
unstable solution is shown �for C=1�, it is observed that the
onset of the instability sets the dark solitons into motion. It is
worth noting that, although, as mentioned above, the insta-
bility threshold of the dark-dark soliton pair is the same as of

FIG. 1. Discrete bright-bright soliton pair separated by a domain
wall. The top panel shows the norm of the solution, P �defined as
per Eq. �2��, as a function of C; the second panel shows a spatial
profile of the two components for C=1.85, where the solution be-
comes unstable due to the presence of a real eigenvalue pair �addi-
tional unstable pairs appear at larger C�. The third panel shows the
spectral plane �	r ,	i� for the eigenvalues, 	=	r+ i	i. The bottom
panel shows the principal eigenvalues bifurcating for C
0.655
from the continuous spectrum and approaching the origin of the
spectral plane. They become unstable at C
1.85 �the second pair
becomes real at C
1.86�, destabilizing the solution. The circles
and triangles show the eigenvalues when they are still imaginary
�stable�, while the stars and crosses show them when they are real,
i.e., unstable.
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the single dark soliton, the feature of instability-induced mo-
tion occurs only in the two-component model, as an obvious
consequence of the repulsion between the two components.

C. Bright-dark soliton pairs

We now address hybrid configurations, in which one com-
ponent supports a bright solitary wave, while the other one
supports a dark solitary wave, with a domain wall arising at
their interface. Such configurations are possible when
g11g22�0, as may be the case for BEC mixtures composed
by different atom species; an example is the 39K- 87Rb mix-
ture, in which the potassium �rubidium� features attractive
�repulsive� intraspecies interaction, i.e., g22�0, g11�0,
while the interspecies interaction is repulsive �g12�0�
�8,9,12�.

First, assuming that g11=−g22=1 and g12=1.1, we show
an example of a bright-dark soliton pair in Fig. 4. In this
case, following the same notation as in the previous subsec-
tions, we take n0=1 and n1=−4 for the dark soliton and n0
=1 for the bright one.

Generally speaking, the stability domain of the bright-
dark pair is restricted by the parametric range where the dis-
crete dark soliton is stable by itself. Figure 4 displays the
situation near the border of this stability region �for C
=0.07�. A difference from the bright-bright and dark-dark
soliton pairs considered above is that the hybrid configura-
tion cannot be continued to large values of C. This is pre-
sumably related to the fact that a part of the pattern develops
a “staggered” structure, with a sign-alternating dependence
between sites; obviously, staggered structures do not have a
continuum limit. We note in passing that, for this reason, we
will not attempt to study the continuum counterparts of such
structures in the next section.

The bottom two panels of Fig. 4 show the evolution of an
unstable bright-dark soliton solution for C=0.08, where the

dark soliton clearly decays. In the simulation, the effect of
the instability can be seen after a rather long time t
1500
�which is natural, given the very weak coupling between
sites which delays the instability manifestation�.

IV. THE CONTINUUM MODEL WITH
THE EXTERNAL TRAP

A. Bright-bright soliton pairs

We now proceed to the model based on the two coupled
continuum NLS equations �3�. Here, the external parabolic
potential due to the presence of a magnetic trap �instead of

FIG. 2. �Color online� The evolution of an unstable pair of dis-
crete bright solitons separated by the domain wall is shown for C
=1.86 by means of space-time contour plots of the absolute values
of the wave functions, ��1,n� and ��2,n� �top and bottom panels�. The
solution is perturbed by its most unstable eigenmode.

FIG. 3. �Color online� Discrete dark-dark soliton pair separated
by a domain wall. The top three panels are similar to the respective
ones in Fig. 1; however, the second and third panels correspond to
C=1. Notice the two unstable quartets in the third panel �their pre-
cise location depends on the number of points used in the discreti-
zation; for these panels, we have used a 200-site lattice�. The last
two panels show �through the space-time contour plots of ��1,n� and
��2,n�� the evolution of the unstable solution for C=1. The solution
is perturbed by its most unstable eigenmode.
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the periodic OL potential which induced the discreteness in
the previous section� provides for the force which balances
the inter-pulse repulsion and prevents indefinite separation
between the components. An example of a stable bright-
bright soliton pair with the DW nested in the middle is given
in Fig. 5. We have found this branch of solutions to be lin-
early stable �and robust in direct simulations� for all the val-
ues of the trap strength � shown in the figure.

In Fig. 5, we also show the separation � between the two
bright solitons as a function of the trap strength �. Naturally,
this dependence is a monotonically decreasing one: � should
go to infinity as �→0, when the force balancing the inter-
component repulsion vanishes. On the other hand, as � be-
comes very large, each one of the pulses gets strongly con-
fined at the trap’s center.

As shown in detail in Appendix A, we have used a varia-
tional approximation �VA� to tackle this problem analyti-

cally. The VA was based on a Gaussian ansatz,

�u�x�,v�x�� = �−1/4
 P

W
exp�−

1

2
� x 


�

2

W
�

2

� , �10�

for the spatial profile of the solution �see Eqs. �8��, which
allows the width W, separation � between the pulses, and
solution’s �half-�norm P �the latter is defined as per Eq. �4��
to be free variational parameters. The VA leads to a system
of three algebraic equations for the relevant parameters. We
have tested this analytical prediction �the dashed line in the

FIG. 4. �Color online� Discrete bright-dark soliton pair sepa-
rated by a domain wall. The coupling parameter value for this ex-
ample is C=0.07, i.e., slightly below the stability border of the dark
solitary wave. The second panel illustrates the stability of the con-
figuration by showing the spectral plane of eigenvalues. The last
two panels depict the evolution of an unstable bright-dark soliton
for C=0.08.

FIG. 5. Continuous bright-bright soliton pair separated by a do-
main wall. The top panel shows the solution’s norm P �defined as
per Eq. �4�� as a function of �. The second panel shows the spatial
profile of the solution �for the two components in solid and dashed
line, respectively; the external potential is shown by dash-dotted
line� for �=0.3. The third panel shows the stability of this solution
through the corresponding eigenvalues for �=0.3 �no real pair�.
The bottom panel of the figure illustrates the result of continuation
for the separation � between the pulses of this stable branch of
solutions, as a function of the magnetic trap strength �. The nu-
merical result is given by the solid line while the variational pre-
diction �see text and Appendix A� is shown by the dashed line.
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bottom panel of Fig. 5� against the corresponding numerical
result �the solid line�, obtaining a fairly good agreement. For
small �, the solitons are well separated, hence the difference
between the strong localization of the Gaussian ansatz �10�
and weaker localization of the exact soliton based on the
sech waveform becomes essential: obviously, the force of
repulsion between Gaussians decays with � faster than be-
tween sech pulses. This may explain a larger discrepancy
between the VA-predicted and numerically found values of �
at smaller values of �.

B. Dark-dark soliton pairs

Bound pairs of dark solitons with an embedded DW have
also been investigated in the continuum model with the in-
terspecies and intraspecies repulsion and external trap. A
typical example is shown in Fig. 6 for g11=g22=1 and g12
=2. The figure presents the continuation of this solution
branch as a function of the trap’s strength �. Intervals of the
values of � where such solutions are linearly stable have
been identified: 0.09���0.155 and ��0.195. It is note-
worthy that there exist two disjoint stability regions. As the

trap strength further increases, it gradually presses the two
dark soliton pair closer to each other, eventually leading to a
merger of the two components into a single antisymmetric
profile at ��0.25.

We have investigated the evolution of unstable dark soli-
ton pairs in direct simulations. A typical example is shown in
Fig. 7 for �2=0.004. Periodic oscillations of the two-soliton
structure arise �as a result of the instability� between the
initial state and an asymmetric one, in which the dark soliton
is far more pronounced in one of the components.

V. BRIGHT SOLITON PAIRS IN THE SYSTEM WITH
LINEAR COUPLING

Another setting where we have found bright soliton pairs
with the embedded DW due to the cross repulsion is the
system in which linear coupling between the components
plays the role of the attractive force that balances their mu-
tual repulsion �cf. Ref. �26��:

i�t�1 = �− 1
2�x

2 − ��1�2 + g12��2�2��1 − ��2,

i�t�2 = �− 1
2�x

2 + g12��1�2 − ��2�2��2 − ��1, �11�

where we set g11=g22=−1, g12 is assumed to be positive and
� is the rate of the linear interconversion �coupling� between
the species. The trapping potential is not included, in antici-
pation of the possibility that the linear coupling can support
solitons without the external trap.

Similarly to the above model with the parabolic trap, the
VA based on ansatz �10� can be applied here, leading to
algebraic equations relating the width, power, and separation
between centers of the waves in the different components.
The equations are given in Appendix B. A noteworthy pre-
diction of the VA is that solutions with a nonzero pulse sepa-
ration, ��0, exist for g12�1/3 �see the Appendix B for
details�, a feature that we check below against numerical
results.

Figure 8 illustrates the profiles and stability of these solu-
tions for �=1. The main issue that arises in this case is that

FIG. 6. �Color online� Continuous dark-dark soliton pair with an
embedded domain wall. The top panel shows the continuation of the
solution’s norm vs the trap’s strength �. For the next panels, the
four subplots show the profiles �top� and stability �bottom� of the
solution for �2=0.004 �left� and �2=0.04 �right�. The last two
panels show, respectively, the separation between centers of mass of
the two components, �, and the real part of the most unstable ei-
genvalue of the configuration, 	r, vs �. It is clearly observed that
the two dark solitons merge for ��0.25. The solution is stable in
two distinct intervals: 0.09���0.155 and ��0.195.

FIG. 7. �Color online� The two panels show the space-time con-
tour plot of the square modulus of the two fields for g12=2=2g11

=2g22 and for �2=0.004.
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the branch of solutions with ��0 is always unstable due to
a pair of real eigenvalues. We have compared the separation
between the solitons in the pair as obtained numerically and
with the VA prediction �see bottom panel in Fig. 8�. While
the VA captures the trend of the relevant dependence, it is
less successful in its quantative comparison due to the dis-
torted nature of the pulse profile �cf. second panel of Fig. 8�.
Notice also that the branch of solutions with the nonvanish-
ing separation ceases to exist, merging with the branch of
�=0 solutions, at g12�1/3. The latter branch �with �=0� is
unstable for all values of g12 shown in the figure. In fact, it
has multiple unstable eigenvalues �see third panel in Fig. 8�
which gradually disappear; the merger of the two branches
occurs when only one real eigenvalue pair is left. Let us also

note, in passing, that we have also tried to fix g12 and vary �,
however, we were not successful in stabilizing this branch of
solutions in the latter setting either.

The evolution of the unstable bright soliton pairs in the
presence of the linear coupling was monitored in direct simu-
lations, as shown in Fig. 9. It is seen that the solution rapidly
breaks its symmetry, and collects nearly all the matter in one
of the two components, while the other one becomes practi-
cally empty. A more careful study of these asymmetric solu-
tions �superimposed bright solitons with different norms� re-
veals that they are always stable, when they emerge,
bifurcating through a pitchfork bifurcation that destabilizes
the symmetric branch of solutions �where both components
carry bright solitons centered around x=0�. Notice that the
g12=0 analog of this bifurcation picture was analyzed exten-
sively in the previous work of �36� and subsequently in the
variational study of �37�. The main difference in the presence
of interspecies coupling concerns the exact location of the
bifurcation point; this question, however, is beside the scope
of the present study, focusing on the phenomenology of vec-
tor solitary waves with embedded domain walls; as such, it
will be deferred for a future publication. A branch of the
asymmetric solutions �centered around x=0� for fixed �=1 is
depicted in Fig. 10.

Other solutions have also been obtained in the model with
the linear coupling, such as the weakly unstable asymmetric
bright soliton pairs shown in Fig. 11. Their instability in-
volves three eigenvalue pairs, and their evolution is dis-
played in the bottom two panels of the figure. We observe
that the instability sets in for t�100, leading to a slightly
asymmetric partition of matter between the components.
Eventually, at longer times, after a collision-type event and
some exchange of matter, the solitons separate indefinitely.

VI. CONCLUSIONS

In this work, we have studied several types of vector
�two-component� solitons in a system of coupled discrete

FIG. 8. �Color online� Continuous bright-bright soliton pair
bound by linear coupling. The top panel shows the norm of the
solution as a function of the coefficient g12 which accounts for the
nonlinear repulsion �the parameter controlling the linear coupling is
fixed to �=1�. The dash-dotted line shows the branch with zero
separation between the solitons ��=0�. The two branches merge for
g12�1/3. The second panel shows an example of the bright-soliton
pair with the domain wall between them, for g12=1.1. The third
panel shows the dependence of the most unstable �real� eigenvalues
for the ��0 �solid line� and the �=0 �dash-dotted line� solutions.
The bottom panel shows the pulse separation between the solitons
in the bound-pair solution as a function of g12. The solid and dashed
lines, respectively, depict the numerical results and prediction of the
variational approximation �see Appendix B�.

FIG. 9. �Color online� Evolution of a bright-soliton pair in the
model with the linear coupling, for g12=1.1 and �=1. The solution
is perturbed only by numerical noise, which is sufficient to provoke
its very rapid transformation into a breathing pulse in one compo-
nent, while the other one keeps practically no matter. The top panel
shows the norm of each component as a function of time. The
middle and lower panels show the evolution in terms of space-time
contour plots of the square modulus of the two fields.
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and continuous nonlinear Schrödinger �NLS� equations. A
distinctive feature of the localized states is the presence of a
domain wall �DW� embedded between the two components,
due to the nonlinear repulsion between them. The models are
relevant to binary mixtures of Bose-Einstein condensates
�BECs� with the repulsive interspecies interaction, and may
also find applications in nonlinear optics �especially, in pho-
tonic crystals�. In the BEC mixture with attractive �repulsive�
intraspecies interactions, the relevant configuration consists
of a bright �dark� soliton in each component, which are sepa-
rated by the DW. Hybrid configurations, with a bright soliton
in the one component and a dark one in the other, were also
found for a mixture of self-attractive and self-repulsive
BECs.

We have found that such configurations can be stable in a
variety of settings. Bright soliton pairs have a linear-stability
region in the discrete model, which appertains to the BEC
mixtures trapped in very deep optical lattices. In the con-
tinuum limit, they are robust too in the presence of a confin-
ing potential, which is a typical ingredient of BEC experi-
ments. Dark-soliton pairs behave quite differently, featuring
alternating regimes of stability and instability. Evolution of
generic unstable configurations was monitored by dint of di-
rect simulations. The continuum model with the linear cou-
pling was investigated too; in that case, bright soliton pairs
exist without any trapping potential, as the linear-attraction
force can balance the nonlinear repulsion.

The states predicted in this work can be created in realis-
tic BEC experiments. To this effect, sufficiently strong inter-
species repulsion �facilitating the formation of the DW� may
be provided, tuning the inter-species interactions by means

of the Feshbach resonance �9,31�. In the presently available
experimental settings, such as mixtures of two different spin
states in 87Rb �3,4� or 23Na �5�, the configurations which are
easiest to implement, among ones considered in this work,
are the pairs of dark solitons �or, possibly, dark-bright ones
for the K-Rb mixtures �12��, which clearly seem within
reach in optical lattices �2� or in the magnetic trap �1,2�. On
the other hand, while bright solitons have been created in
one-component BECs �38�, the generation of bright-soliton
pairs appears to be a more challenging possibility in the cur-
rently available systems. However, a similar and more
straightforward possibility may be provided by pairs of
bright solitons of the gap type, which were recently created
in a repulsive BEC loaded in an optical lattice �39�. The
latter possibility is currently under study and will be reported
elsewhere.

FIG. 10. Branch of the stable asymmetric bright soliton pair in
the presence of linear coupling. The top panel depicts the norm of
the bright solitons in each component as g12 is varied. This branch
is found to be stable in all of its domain. The middle and bottom
panels show an example of such a configuration and its stability
spectrum for g12=1. The linear coupling for these results is fixed at
�=1.

FIG. 11. �Color online� Weakly unstable asymmetric bright-
soliton pair for g12=1.1 and �=1. The top panel is the solution
profile, and the second panel illustrates its �in�stability. The third
panel shows the evolution of the norms of the two components as a
function of time. The two bottom panels show space-time contour
plots of square modulus of the two fields.
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APPENDIX A: THE VARIATIONAL APPROXIMATION FOR
THE CONTINUUM MODEL

We start with the symmetric version of the system of Eqs.
�3�,

i�t�1 = �−
1

2
�x

2 − ��1�2 + g��2�2 +
�2

2
x2��1,

i�t�2 = �−
1

2
�x

2 + g��1�2 − ��2�2 +
�2

2
x2��2, �A1�

in which we have set g11=g22=1 and g12�g�0 �to provide
for repulsion between the two species�. The control param-
eters of the model are g and the norms of the solution,

P = 	
−�

+�

��1�x��2dx = 	
−�

+�

��2�x��2dx �A2�

�for the symmetric case under consideration�. Symmetric sta-
tionary solutions are to be looked for as

�1 = exp�− i�t�u�x�, �2 = exp�− i�t�v�x� , �A3�

with a real chemical potential �. The real functions v�x� and
u�x� satisfy the equations

�u = −
1

2
u� + �− u2 + gv2�u +

�2

2
x2u ,

�u = −
1

2
v� + �− v2 + gu2�v +

�2

2
x2v . �A4�

Stationary equations �A4� can be derived from the Lagrang-
ian L=�−�

+�Ldx, with the density

L =
1

4
��du

dx
�2

+ �dv
dx
�2� −

�

2
�u2 + v2� −

1

4
�u4 + v4� +

g

2
u2v2

+
1

4
�2x2�u2 + v2� . �A5�

To apply the variational approximation �VA�, we use the an-
satz �10�, defined in the text. Its substitution in Eq. �A5� and
integration yield

L =
1

4

P

W2 − �P −
1

2
2�

P2

W
+

g

2
2�

P2

W
exp�− ��

+
1

4
�2PW2�� + 1� , �A6�

where a separation parameter has been defined,

� � �2/2W2. �A7�

One may now consider P as an unknown that must be
found for given �. Then, for given � and g, the variational
parameters are P, W, and �. The variational equation �L /��
=0 takes the form

exp�− �� = �2

2�W3

2gP
, �A8�

and the equation �L /�W=0 amounts to

1

2�

PW + �2�1

2
+ ��W4 = 1. �A9�

Finally, the equation �L /�P=0 yields an expression for the
chemical potential

� =
1

4W2 −
1


2�

P

W
+

1

4
�2W2�3 + �� , �A10�

which also can be used to predict the condition for the
absence of instability of the solution accounted for by real
eigenvalues in the form of the Vakhitov-Kolokolov �VK�
criterion, d� /dP�0 �40�.

APPENDIX B: VARIATIONAL APPROXIMATION
FOR THE CONTINUUM MODEL WITH

THE LINEAR COUPLING

To apply the VA to the system of linearly coupled equa-
tions �11� we set, by means of a rescaling, �=1. Then, in
addition to g12, a control parameter of the model is the norm
of the solution, P, defined as per Eq. �4�. Searching for sta-
tionary solutions of Eqs. �11� in the form of Eqs. �A3�, we
then arrive at equations

�V = −
1

2
V� + �− V2 + g12U

2�V − V ,

�U = −
1

2
U� + �− U2 + g12V

2�U − V . �B1�

We will look for stationary solutions by varying P, for a
fixed nonlinearity coefficient g12. We may assume that, for
small P, centers of both components coincide, so that u�x�
=v�x�. With the increase of P, the nonlinear repulsion be-
tween the species increases, and one should encounter a criti-
cal norm, Pcr, at which a transition to a split state, with a
finite separation, �, between the centers of the components
�it is precisely a transition to a two-component bright soliton
with an embedded domain wall�. The coordinates of the cen-
ters of mass of the two species can be defined as

��,�� = P−1	
−�

+�

�u2�x�,v2�x��x dx . �B2�

In the split state, we assume equal norms of the components,
with their centers located at �� ,��= ±� /2.

Proceeding to the VA proper, we notice that stationary
equations �B1� can be derived from the Lagrangian
L=�−�

+�Ldx, with the density
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L =
1

4
��du

dx
�2

+ �dv
dx
�2� −

�

2
�u2 + v2� −

1

4
�v4 + u4�

+
1

2
g12u

2v2 − uv . �B3�

Using again the ansatz given in Eq. �10�, we derive the ef-
fective Lagrangian in the following form:

L = − �P +
1

4

P

W2 −
1

2
2�

P2

W
+

g12

2
2�

P2

W
exp�− ��

− P exp�− 2�� , �B4�

where � is the same as in Eq. �A7�. Assuming, as in Appen-
dix A, P as an unknown that must be found for given � and
g12, the variational equations yield the following results:

exp�− 2�� =
2
2�W

g12P
, �B5�

−
1

W
+

P

2
2�
−

2
2�W2

g12P
= 0, �B6�

� =
1

4W2 −
P

2
2�W
−


2�W

g12P
. �B7�

The latter equation may be used to predict the stability of the
states as per the above-mentioned VK criterion, i.e.,
d� /dP�0.

For given P, it is necessary to find W from Eq. �B6�, and
then find � from Eqs. �B5� and �A7�. Physical solutions must

have W real and positive, and exp�−2���1. For P→0, Eq.
�B6� take the form W3
−g12P / �
2��, i.e., all the solutions
are unphysical �one negative, and two complex conjugate,
which actually implies that the VA does not apply for P
→0�. Equation �B6�, obviously, does not admit a real root
crossing zero, therefore one root �which is negative and real
for P→0� always remains real and negative, i.e., unphysical.
With the increase of P, a pair of physical roots for W appear
when the complex roots merge and thus bifurcate into a real
pair. Analysis shows that this happens at

P = Pmin = 3
��3g12�−1/4, �B8�

the corresponding physical root itself being

W�P = Pmin� = �3g12

4
�1/4

�B9�

�it is a double root at P= Pmin�. The substitution of �B8� and
�B9� in Eq. �B5� yields an expression that determines the
value of the separation parameter � corresponding to P
= Pmin:

exp�4�� = 3g12. �B10�

Finally, Eq. �B10� yields a physical solution, with exp�−2��
�1, if g12�1/3.
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